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Creep and Yield Model of Ice under Combined Stress

ANATOLY M. FISH
INTRODUCTION

The successful solution of ice engineering problems depends greatly upon the accuracy of the constitutive
laws and failure criteria of ice used in analyses of engineering structures. Two approaches can be distinguished
in describing the deformation and failure processes of ice in uniaxial as well as multiaxial stress states.

In the first (tradirional) approach, it is assumed that the total creep shear strain y° can be broken down into
four components:

T=Y+Hp+tw+n m

where e, ¥p, Y and ¥, are elastic, primary, secondary, and tertiary pure shear strain, respectively. In practice,
however, to simplify the parameter evaluation procedure and/or to obtain closed-form solutions of boundary
problems, some of the strain components in eq 1 are often ignored, and the time-dependent creep process in ice
is portrayed by simplified models: primary (yy =Y,=0), secondary (yp = ;= 0), and tertiary (y, =y, = 0) creep
equations, often represented by various mechanical models. Combined models such as attenuating (y, = 0),
exponential (y,=0), and othercreep models are based explicitly orimplicitly upon various combinations of the
components of eq 1. The failure process, particularly time to failure, is either not considered (in most cases) or
is assumed to take place in the later, secondary or tertiary stages of creep. Moreover, often the ice strength is
considered a special field of study loosely related to the creep of ice.

Inthe second approach, deformation and faiture of ice are considered to be a unified process that takes place
in all stag,es of creep. Consequently, the creep process is not considered in terms of real time (¢) but in terms
of normylized time ¢ = ¢/t,,,, where ¢y, is time to failure (Fish 1980, Morland and Spring 1981, and others).

Time to failure plays anextremely important role within the framework of this approach. It is one of the most
important parameters that define the service lifetime of astructure, Time to failure unites all three stages of creep
and failure, but it also combines creep and fracture, microcrack formation kinetics, recrystallization, and other
processes that take place during deformation and failure of ice (Fish 1976).

The principal elements of the model, which was originlly developed (Fish 1976, 1980, 1983, 1987) to
describe one-dimensional creep and failure of frozen soils and ice, and is expanded below for three-dimensional
defonmation, can also be approximately expressed in terms of the components of eq 1 as a product of primary,
secondary, and tertiary creep strains, i.e.,

Y =Y + YpYmMt )

where vy, = Const. = viscous shear strain at failure. Both primary and tertiary creep strains are functions of
normalized time,i.e., Yo =Y, (t-) andy, = yl(t-) Secondary creep is considered to bea point (M) on the creep curve
(Fig. 1) defining time to fallure The stress dependency of the strain rate that reaches a minimum ('y 0) at this
point is described by a viscous flow equation which, as well as the time to failure function, includes a yield
criterion of ice.

Thus the combined creep and yield model of ice under multiaxial stress developed in the following sections
consists of four principal elemerts: a constitutive equation, a viscous flow equation and a yield criterion, all
united by a time to failure function. One of the specific features of this model is that any of its elements can be
replaced if it is found that other functions better represent the mechanical behavior of ice during creep.
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Figure 1. Creep model for ice in a multiaxial stress state (Fish 1983, 1984).
CREEP MODEL

Triaxial creep tests (t; = Const)

Constitutive equation

The entire deformation process, which includes primary, secondary, and tertiary short-term creep of homo-
geneous and isotropic ice under multiaxial stress at constant temperature, can be presented as a product of the
flow equation and the nondimensicnal time function (Fish 1980, 1983):

. 2 '\
H{1) = 4o L0} )
. 472 . N
where yi(;) =2J,, = shear strain rate (intensity)
Yir = Minimum shear strain rate
Jy = é_ [(el - 32)2 +(&,- 33)2 +(85-¢)) ] = second invariant of the deviatoric strain rate
tensor.

The nondimensional time function
[ -1\8 - -
F\:):E—_—-‘ =exp{8(t-lnt—l)> @
t

where § is the first shape parameter of a creep curve. Function F(t-) is such that for primary and tertiary creep
F(t-) > 1, and for secondary creep (points M in Fig, 1)t =1, =1, and F(_)= 1. Forice, the value of § is between
0.3 and 0.7 and has an average value of ~0.5 (Fish 1987).
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Flow equation
The minimum shear strain rate is related to the time to failure by means of the flow equation
&im='c_ or ‘?imtm =C ®
~ m
where C = the second shape parameter, which is equal to the viscous strain at failure. For polycrystalline ice
C is between 10~! and 103, Both §and C are assumed to be constant for a given ice temperature. The tilde (~)
indicates that in the general case C may be a function of stress, temperature and other factors (Fish 1987, 1989).

Time to failure

When time ¢ = t,, the strain rate reaches a minimum; =Yy, (¥; = 0), and it is assumed that failure occurs.
In the framework of this model, time to failure ¢, performs a crucial role: it not only unites all stages of creep,
whichmakes it possible todescribe the entire creep process underboth constant stresses and constant strainrates
by means of a single constitutive equation, but it also combines the long-term strength and the yield criteria of
ice so that the latter can be incorporated into the constitutive equation of ice. The magnitude of shear stress that
causes failure at time ¢, can be expressed (Fish 1991) as a product of two independent functions: the yield
function (criterion) and the nondimensional time functicn oft :

Jy= I, 02(7) 6)

where Joo = Jo(/1) is an “instantaneous” yield criterion, /; is the first invariant of the stress tensor, and./, is the
second invariant of deviatoric stress tensor. By selecting the time function in the simplest form,

~1 -
olr) = (1) 12 0f1) (7
where ; = ty/to = nondimensional time to failure
t, = relaxation time (see eq 12 below)

n = parameter.

Combining eq 6 and 7, the failure or the long-term strength criterion of ice takes the form

or )
n =10 (%—) )

1 . " . .
where 1, = szz and 1, = J;g can be defined as the shear stress and the “instantaneous” shear stress intensity
(resultant) respectively (see eq 38 below).

Maodified flow equation
Combining eq 5, 8 and 9, the flow equation of ice in a multiaxial stress state becomes

~ 2~ ,
_ =_C_(12_)" =Q(£i.)' (10)
Mty fo \Tio
or
. ~ s —f T \#
yim=cL£e’5/RT(-_n_) (11
I Tio




where

—_h E
o= &*P (RT) (12
and ¢, = Frenkel’s relaxation time (Frenkel 1947)

h = Planck’s constant

k = Boltzmann’s constant

T = absolute temperature

E = activation energy

R = gas constant.

Note that the flow equations (eq 10 and 11) are fundamentally different from'th'g Norton-Glen (1958) flow law
(see eq 43 below) although it contains a power function of stress. Parameters C and t, inieq 10 and 11 have a
definite physical meaning, and the denominator of the stress function is a temperature-dependent yield criterion
of ice (see eq 38 below). This yield criterion, which is a function of the first invariant of the stress tensor, relates
the minimum shear strain rate and the shear stress in the whole spectrum of hydrostatic pressures (mean norm 4
stresses). At the mean stress oy, < Onax the firstinvariant serves as a depressant forthe strainrate; i.e, the increase
of the hydrostatic stress is accompanied by a decrease of the strain rate. When stress 6y, > 62« the increase of
the hydrostatic str :ss enhances the creep rate that is confirmed by test data (Jones and Chen 1983),

The original Norton equation is more suitable for frictionless materials, such as metals, the creep behavior of
which is unaffected by the first invariant of the stress tensor. If the combination of applied stresses is such that
Tj = Tjp and 1y, = 4, then eq 10 becomes

Yo =& (13)
tO
where y;, = ¥, can be defined as the “instantaneous” shear strain rate, i.e., the rate at which the transition from
the brittle to the ductile mode of failure takes place.

Creep shear strain
Atconstant stresses creep shear strains are obtained by integrating eq 3. The entire creep process as described
by (Fish 1983) is

yf(t):%j+?ir\y (14

where 7; = shear stress
G= sh?ar modulus
A= ZJZf = creep shear strain
Joe = -é— [(el — )+ (e - &)+ (g5~ 81)2] =second invariant of the deviatoric strain tensor

V= \p(i) = integration coefficient calculated depending upon the normalized time ¢.
In the practical sense, the instantaneous strains are small and in many instances can be ignored, which

substantially simplifies the parameter evaluation procedure. When ¢ = tp, t=1, and y; =i €9 14 gives an
expression for failure shear strain (Fig. 1)

(A .

Yfm:é"*' Yimm¥m (15
where vy, is an integration coefficient calculated for t=1. The fust term in the right side of eq 15 is the
instantaneous strain and is ignored in the plot shown in Figure 1.

Combining eq 5 and 15

p=d +Cyy =Tt (16)

Q|
Sy
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where y,, = 1/(1.- §)12 = A2 anda= l ~38. It is more corvenient for: the. Analysns of test data to usear,
approximate integral of eq 3 (Fish 1983, 2g 38; Fish 1987, eq 20):

10 = % + L 7l an

A

where §; =A12- . Defining CN‘(t) =¥,t and combining eq 5 and 17 the entire creep process can be expressed
in terms of viscous (nonrecoverable) shear strain only:

yf({)z%,,._v%( ()J s{C(n-c) (18)

where 8, = 5,/C .

Thus, the entire creep process in ice in a multiaxial stress state at constant stresses is described by means of
only two parameters, C and 8()), to be determined from test data. An evaluation procedure for these parameters
is presented in Fish (1983, 1987, 1989).

Triaxial constant strain rate tests (y; = Const.)

Strength criterion

If the tests are carried out in such a manner that the shear strain rate is maintained constant (strength tests)
at ;= Yy the shear stress becomes a function of this rate, Defining ¥; = %, Yim = Yim fm» and C = Yy, and
combining the lat*er with eq 10,

ot \n

Tim= Tio (h : (19)
im

where 1, is a yield criterion (eq 38 below). Subscript m indicates that the magnitudes of stress (tjy,) and strain

(vim) are referred to the point M corresponding to the maximum (peak) shear stress in Figure 1.

If y, y,o then ¥, =¥,y = y- t, and 7, = 15, and eq 19 will coincide with eq 13; i.e., the maximum (peak)
shear stress will coincide with the yield stress

Stress—strain relationship
Stress-strain relationships outside point M (Fig. 1) are obtained by combining and rearranging eq 3, 4, and

19:
’ 1)
Ti= Tim (E:—) (20)

5= Ty )&nex;{-— X - 1 ] ¥3))

Yxm

or

where £ =t/1, = y,/1, = ¥, and 7; = %(¢) = 1;(7). For secondary creep, 7 = 1 and the strain rate dependency of
stress is defined by eq 19.

YIELD MODEL

Extended von Miscs criterion

Analysis of test data shows that at low stress levels (Haynes 1975) or low strain rates (Hawkes and Mellor
1972) the strength of ice is independent of confining pressure, the angle of internal friction of ice approaches
zero, and ice may be considered as anideally cohesive material whose yield criterion may be selected inthe form
of either the von Mises or the Tresca rupture models. On the other hand, triaxial tests carried out at relatively
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high stresses, high strain rates and/or high confining pressures (Sayles 1974, Jones 1978, 1982, Hausler 1982,
Richter-Menge et al. 1986 and others) indicate that the strength of ice is a nonlinear function of the confining/
pressure. Sayles (1974) showed that the angle of intemal friction of ice differs from zero. Moreover, at acertain
level of confining pressure the strength of ice reaches a maximum value (Jones 1978) associated with the ice
melting pressure. The yield function of such a material can be expressed in terms of the extended von Mises
or Mohr-Coulomb rupture models (Fish 199}), and inthe former case by expanding the von Mises criterion into
the series

L= dv il + dl+ dP+ it ... (22)

where J, = second invariant of the deviatoric stress tensor
= first invariant of the stress tensor
d,dy 2,34 = parameters.

By retaining only the first term on the right side of eq 22 it becomes von Mises’ yield criterion; the first two
terms—the von Mises-Drucker-Pragercriterion; three terms—Nadai’s type yield criterion (Nadax 1950; Smith
1974; and others); four terms—the teardrop mode} for ice (Nadreau and Michel 1986, 1986a); etc. We will limit-
ourselves to consideration of the second-order polynomial function as the simplest nonlinear yield function
whose parameters can be easily determined from test data.

Parabolic yield criterion
Let us assume that the compressive stresses are positive, Then the strength of ice in a multjaxial stress state
can be described by a parabolic yield criterion in Figure 2 (Fish 1991):

= c+ bo,, — o 23)
Omax
where
Jm—-- 6;— 0, + (Gy—03)% + (62 =0 2]\
Ellomf + (or-0 + (53-a1)]

is shear stress (intensity) and

oul

O = k= .1.((;l ++ G, + 03) = mean normal stress
3 3
2
Tla/\g
b 2
T= -
i C+bcm 26max o-m
max T;
b
" max1i=c+-50max
g
(e ‘
[}
2 2
(/)- hl zsﬁmi Gmax'i- Gmax
v c
/ b=tan¢
=On Hz Hydrostatic Hy | Onp

h, 0 Cmax Axis h,
I 1
Om == =Mean Normal Stress

Figure 2. Yield criteria of ice: 1-von Mises, 2-Drucker-Prager, 3-Parabolic (Fish 1991 ).
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01, 02, 03- principal stressés -
‘= resistance in pure Shear associated with the-ice cohesion on the octahedral plane’
= tan¢ and ¢ = angle of internal friction on the octahedral plane .
Omax = ice melting pressure, i.e., the magnitude of the mean normal stress at which the shear stress of ice
reaches a maximum:

max 7, =C + é’-omax. (24)

The yield curve intersects the hydrostatic axis at points H) 5, the abscissas of which are

7 25)

hig = Opax & [°%nax + ‘Zbg“’max]

Note that the yield curve shape is defined by the ratio of parameters ¢ and b,

Equation 23 canbe considered as anextended von Mises-Drucker-Prageryield criterion, Atlow stress levels
(cmax ~ =), eq 23 transforms into the Drucker-Prager (1952) yield criterion. For frictionless materials (b=0),
eq 23 reduces to the von Mises yield criterion. Parameter Gy,,x may be regarded as one of the fundamental
physical characteristics of ice, probably closely related to the phase changing pressure (point H;) for a given
temperature (Nadreau and Michel 1986; Hallam and Nadreau 1988). Point H, with abscissa hy may be
considered as the resistance of ice to triaxial extension. Introduction of a new ice physical characteristic pax
and ratio b/26m,x in €q 23 makes the latter different from the known parabolic yield criteria of Nadai (1950),
Smith (1974), and others. Instead of the ratio b/20y,x these authors use the parameter d (eq 22), the physical
meaning of whichis uncertain and the magnitude of which will be dependent of the strain rate (or time to failure).
Therefore, these criteria cannot be applied to describe the test data plotted below with a single set of the strength
parameters.

Thus ice strength in a multiaxial stress state can be described by a yield criterion (eq 23), turee parameters
of which—c, b(9) and omax—have a definite physical meaning and can be determined from test data.

LONG-TERM STRENGTH

Triaxial creep tests (1; = Const.)

It has been mentioned above that the creep strength of ice is a function of time or the applied strain rate. The
absolute values of ice strength as well as the magnitudes of the strength parameters change from the greatest
(instantaneous) values at the time of loading (#,) to zero for longer time intervals. Consequently the creep
strength of ice will not be characterized by a single yield curve but by a family of curves for given times 1, <
1y <ty (Fig. 3) or given strainrates y;, > ¥;; > ¥;,. During creep at constant stress, the strength parameters in eq
23, except opax, become functions of time to failure:

bit
0 =)+ o= 2L o2 20
205

where ¢(r) and b(f) = tan¢(f) are the cohesion and this friction angle, on the octahedral plane, at time ¢ = t,,
respectively. The ice strength reaches its maximum when

e(r) b(t)

max (1) = c(t) + =L Oy - @7

Note that the shape of the creep strength curves and the abscissas of points Hy and H in Figure 3 are dependent
upon the ratio of parameters c(f) and b(¢) and their change with time:

112
NGET . [02 + 204 max] . 28
1,2 50 (28)




b), of
" o<ty <ty ,(t) c(t)+b(t)6m = c,,, )
max Ty — == == ==
I
| b()
| el VA
3 maxt,) - f- === maxTi{)=e )+ 3" Omax
]
§ 1
5 maxT(ty) 2c (t) 2
& ¢o : P, 2=Omaxt <ymx;lx"‘ b () Omax
I
|
I
: ' b(t)=tan ()
-Om : Hydrostatic Axis Om
Hp hy 0 i
2 h Omax hy Hy cl)
I 5o i Const,
Om= 3 Mean Normal Stress
Figure 3, Creep strength criterion (Fish 1991),
As a first approximation one may assume that this ratio
a . Const (29)

b()
i.e., the coordinates of the points H) 2 during creep, remain unchanged and all the curves will have common
intercepts. At low stress levels or when Opmax —» oo, €q 26 reduces to the von Mises-Drucker-Prager strength
criterion expanded for creep conditions:

() = c(f) + blom : (30
and when b = 0 it reduces to the von Mises strcngtfx criterion

50 =c@), Gn
in which parameters ¢ and b are functions of time.

Triaxial constant strain rate tests (*}, =Const .)

For constant strain rate (strength) tests £y, =¥/¥; = Yip/Yim » fo = Yio/Yio - Then the parameters of eq 26
through 31 as well as the strength criteria of ice become functions of the shear strain rate (and strain), i.e.:

)= cli) + i - 2. 2 @)
max‘fi('?i) =c ('Y,) + E%Q' Omax (33)
and
I ) = O o2 + 2200 " (34)
1,2\Yi/ = Omax { max b('Yl) omax} .
When 6y 2> 2and bz 0,
Ti('i’i) = C‘(‘fi) + b(’?ﬁ) Omax * (35




Whenb=0,
Ti(‘?i) = C(Yl) (36)

For constant strain rate tests the creep strength criterion depicted in Figure 3 will retain its original meaning,
However, the time functions of the strength parameters in it must be replaced by functions of shear strain rates
(Fig. 4). The creep strength curves will have common intercepts—points H; , if the ratio

&)
i.{i— = Const. 7
b(7,)

If this ratio varies, i.e., if the rates of change of parameters ¢ and b are different, the curves will intersect,

Time-dependent failure

Passing vertical planes through point M in Figure 3 one obtains the relationship between the creep strength
oficet;and the timetofailure #,, Suchadependency relates the (instantaneous) yield function of ice determined
from creep tests at time f, (or from constant strain rate tests at the shear strain rate y;,) with a creep strength 7(r)
= 7(ty,) determined at times £, = 4, .. fy €lC,

Ithasbeen shownelsewhere (Fish 1991) that the creep strengthcriterion (eq 26) can be expressed as aproduct
of the yield function (eq 23) and the nondimensional time function (eq 7), i.e.

= 1i0¢(‘;) (6)
whent, =t,, <I>(;) =1and

Ty = € + b0y = a0, (38)

Gy = by/26.x » b, =tand,,

Subscript 0 indicates that the failure shear stress or the strength parameters are referred to the instantaneous
yield conditions. Comparing eq 6, 7, 9, 26, and 38

d)(;) = IJQZ = .b_(t.)_ = E\E,Q = (tm/to)‘l, " 39
io (0] 0

Consequently, for constant strain rate tests (t; = 7y,) eq 39 takes the form

d)(;): d)('?):ﬂ).:é(_‘hl:fﬁ)_: liﬂ‘. —l/n. (4(.’)
l Tio bo bo ?ito

Note that the two parameters t, and n define the shapes of the curves of the long-term strength of ice. Analysis
of Jones’ data (Nadreau and Michel 1986a) showed that for ice under triaxial compression the exponent n
changes insignificantly. However, the magnitude of » increases slightly when the confining pressure is zero.
Ithas beenshown (Fish 1991) for frozen soils at six different types of loading (uniaxial compression and tension,
pure shear, and triaxial compression at three different mean normal stresses) that, for practical purposes, these
parameters may be considered to be independent of the loading regime.
Thus the entire process of deformation and failure of ice in a multiaxial stress state at both constant stresses

and constant strain rates is described by seven parameters:

Creep 8(A)andC

Failure time ¢, and n

Yield cq, bo(do), and oypax

which are determined from test data.
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Figure 4. Strength of polycrystalline ice under triaxial compression (6] > 62
=03) at -11.8°C (data from Jones, 1982).

TEST DATA

Yield of ice under triaxial compression

The triaxial constant strain rate tests used in the present analysis were performed by Jones (1982). The
freshwaterice usedin them had arandomly oriented polycrystalline structure, The laboratory-made ice samples
were 20 mm in diameter and 60 mm long. The axial strain rate €, varied between 107 and 10~! s~! and the
confining pressure (02 = ¢3) ranged from 0.1 to 85 MPa. The tests were carried out at —11.8° £0.9°C. The test
data were recalculated by this author in terms of the shear stress (t;) versus the mean normal stress, gy, and are
presented in Figure 4.

Strictly speaking, this type of triaxial test can only approximately be considered as a pure constant strain rate
regime. Indeed, during each test the axial strain was applied at a certain rate (constant strain rate regime), while
the confining pressure which corresponds to a creep regime at constant stress was maintained constant.

Nevertheless, as a first approximation one may assume that eq 19 can be applied to this type of test, For tests
when 6| > 05 = o3 it takes the form

(&, + &)t )”"
o= (L =30 . 1
mee ((el + €3)im
Unfortunately, values of &5, €, €3 and 1, are unavailable; therefore eq 41 is approximated by
¢ I/ n
Tim = Tio (—'—) 42)
€10

where € o = (¢; — £3)/t, can be defined as the “instantaneous” strain rate. Such an approximation will not affect
considerably the final calculations of the ice strength. Note that eq 42 is a simplified version of eq 19. For the
analysis of the test data in Figure 4. Jones (1982) used Norton-Glen’s power function

§1=A (o) — o) 43)
10




Jones also found that exponent n = 3.95, and that at strain rates €, = 5.4 x 10°2 5! and above the ice strength
practically does not change. Therefore, for this particular type of ice and for the given test temperature this rate
can be considered an “instantaneous” strain rate. Since eq 42 and 43 have the same (power) structure the
exponent n can be used in the following analysis.

Then the magnitudes of the instantaneous shear stress as a function of the mean stress 1;, =f{oy,) can easily
be calculated by eq 42 using test data from Figure 4. After that the parameters of the yield criterion can be
calculated by eq 38 and 25.

Based upon a regression analysis of all 86 tests the parameters of the yield criterion turned out to be

co = 164 MPa

b, =027

o = 15°

Omax = 41.5 MPa

hy = 123.7MPa

hy = -40.7 MPa .
Both the experimental and predicted (by eq 38, 40 and 42) values of the ice shear strength under triaxial
compression at various axial strain rates and at various mean normal stresses are presented in Figure 4, One can
conclude that equations developed fit the test data quite well.

It is interesting to note that the magnitude of o« (41.5 MPa) is in agreement with that found by Jones
(~40 MPa). The magnitude of the intersect (h; = 123,7 MPa) is in agreement with the value (~120 MPa)
suggested in Hallam and Nadreau (1988).

Note that the instantaneous value of the ice friction angle turned out to be very small (¢, = 15°). Both the
friction angle and the cohesion decrease rapidly with decreasing strain rate, and at a strain rate of ~10~6s~! the
friction angle magnitude ¢ = 1° That means that the ice gradually transforms from a material that at high strain
rates possesses both the cohesion and the friction angle into an ideally cohesive material the shear strength of
which may be described by a the von Mises (eq 36) or the Tresca strength criterian expanded for creep con-
ditions. The latter is a particular case of a more general parabolic (extended) Mohr-Coulomb strength criterion
that also can be applied to describe the entire family of yield surfaces in Figure 4 (Fish 1991).

~

Creep of ice under triaxial compression

Triaxial tests of ice used in the creep analysis were performed by Golubov et al. (1990) using laboratory-
made samples of saline ice. The test samples were 45.1 mm in diameter and 100 mm tong. The diameter of the
randomly oriented ice crystals varied between 0.5 and 1.5 mm. The density of the ice was 0.85t0 0.9 g/em> and
average salinity was ~5%o. The tests were carried out ai -5°C £0,2°C,

Priorto the creep tests a series of strength tests were conducted at a constant strain rate and various confining
pressures (o2 =03). The data from these tests were recalculated in terms of 1, = f{c,,,) and are presented in Figure
5. The strain rate at which the tests were conducted was not specified, but comparison with the creeptests shown
in Figure 6 brings us to the conclusion that the strength test strain rate was higher than the secondary creep rate
inthe creep tests. Therefore, the datain Figure 5 can be used for determining the strength parameters of the saline
ice. The tests were conducted under considerably smaller mean normal stresses than the tests of Jones (Fig. 4).
Therefore the test data can be approximated by the linear von Mises. Drucker-Prager yield criterion (eq 38 at
a, = 0). The magnitudes of the strength parameters of the saline ice at - 5°C turned out to be

co=0.58MPa and by=0.11 (¢, ~6°)

which are considerably smaller than those of freshwater polycrystalline ice at-11.8°C.

The results of the triaxial creep tests are presented in Figure 6. These tests were carried out at constant shear
stress 7, = (o) - 03) /Y3 =0.46 MPa and at three different magnitudes of the mean normal stress (G, = 118,
2.18 and 4.18 MPa). From a cursory analysis of the test data « ne can conclude that when all other conditions
are equal the creep shear strain and the strain rate in ice substantially depend upon the mean normal stress as
predicted by eq 10.
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T; = (01 — O3)/V3, Shear Stress (MPa)

Saline Ice at—- 5+ 0,2°C
(data from Golubov et al. 1990)
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Figure 5. Strength of saline ice under triaxial compression (6;> 02 =03)at
=5°C (data from Golubov et al. 1990).
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(data from Golubov et al., 1990) /
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Figure6.Creep of salineice at—5 °C under triaxial compression(c; >G62=63) at constant
shear stress t; = 0.46 MPa and various mean normal stresses 6, = 1.18;2.18 and4.18
MPa (data from Golubov et al. 1990).
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The plot in Figure 6 contains both the experimental and predicted creep curvés, The latter were calculated
byeq5,9, 10, 17 and 38 using the following magnitudes of the creep parameters: C =0.1;A=0.57; 6; =0.185;
n=5.46; 1, =6.63 x 103 s; and ¢, and b, obtained from the test data, assuming that the instantaneous strains
are small and can be ignored. One can conclude that correspondence between the experimental and predicted
creep shear strains is quite good, taking into account the fact that a single set of parameters was used in the
caluulations, together with a very limited amount of test data.

CONCLUSIONS

1. A combined creep and yield model has been developed for ice under multiaxial stresses for both constant
stress and constant strainrate loading regimes, The creepmodel (Fish 1980, 1983) describes the entire (primary,
secondary and tertiary) creep process in ice in terms of shear strain and consists of four principal elements: a
constitutive equation, a flow (secondary creep) equation and a yield criterion, all united by a time to failure
function. '

2. Secondary creep is considered to be atransition point from primary to a tertiary creep stages defining time
to failure. The strain rate at this point is a function of both the second invariant of the deviatoric stress tensor
(/2) (shear stress) and the first invariant of the stress tensor (/) (hydrostatic pressure). The stress dependency
of the secondary (minimum) creep strain rate at failure is described by a modified Norton-Glen (power) equa-
tion, which as well as the time to failure function, include a yield criterion for ice.

3. The yield model is selected in the form of the (parabolic) extended von Mises-Drucker-Prager or the ex-
tended Mohr-Coulomb yield criterion (Fish 1991) in which the ice strengthis characterized by three parameters:
the cohesion ¢ and the friction angle ¢, on the octahedral plane, and the ice melting pressure oyax, i.e. the
magnitude of the mean normal stress at which the shear strength of ice reaches a maximum value,

4, The model has been verified using test data on the strength of freshwater polycrystalline ice at -11.8°C
(Jones 16¢2) and creep of saline ice at =5°C (Golubov et al, 1990), both under triaxial compression.
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